Information bounds for Cox regression models with missing data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Bounds for Cox Regression Models with Missing Data

We derive information bounds for the regression parameters in Cox models when data are missing at random. These calculations are of interest for understanding the behavior of efficient estimation in case-cohort designs, a type of two-phase design often used in cohort studies. The derivations make use of key lemmas appearing in Robins, Rotnitzky and Zhao [J. Amer. Statist. Assoc. 89 (1994) 846–8...

متن کامل

Cox Regression for Current Status Data with Missing Covariates

Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...

متن کامل

Cox Regression Models with Functional Covariates for Survival Data.

We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criter...

متن کامل

Variable Selection for Regression Models with Missing Data.

We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simu...

متن کامل

Local linear regression for generalized linear models with missing data

Fan, Heckman and Wand (1995) proposed locally weighted kernel polynomial regression methods for generalized linear models and quasilikelihood functions. When the covariate variables are missing at random, we propose a weighted estimator based on the inverse selection probability weights. Distribution theory is derived when the selection probabilities are estimated nonparametrically. We show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2004

ISSN: 0090-5364

DOI: 10.1214/009053604000000157